A Comparison of the Effects of Dominance on Evolutionary Programming and Genetic Algorithms

نویسندگان

  • Arnold L. Patton
  • Terrence W. Dexter
چکیده

Genetic Algorithms (GA) and Evolutionary Programming(EP) are both search techniques predicated upon simulating some of the processes outlined in evolutionary theories. Both techniques claim the capacity to find global minima (or alternately maxima) in large search spaces. Genetic Algorithms employ sexual reproduction among fit parents using genotypic operators such as crossover, bit mutation, and inversion. On the other hand, Evolutionary Programming espouses a form of asexual phenotypic reproduction whereby each candidate parent undergoes a zero-mean Gaussian mutation. Previous studies have shown that EP is capable of producing more precise solutions than GAs for a number of simple functions. This paper investigates another class of problem spaces for which GA outperforms EP, specifically problems where portions of a given solution have a greatly varying impact on the overall score. A simple representative problem is tested against typical EP and GA implementations with special attention paid to testing the effects of search parameters on both EP and GA performance. Finally, the relative performance and ease of use of the two paradigms is compared.

منابع مشابه

Relational Databases Query Optimization using Hybrid Evolutionary Algorithm

Optimizing the database queries is one of hard research problems. Exhaustive search techniques like dynamic programming is suitable for queries with a few relations, but by increasing the number of relations in query, much use of memory and processing is needed, and the use of these methods is not suitable, so we have to use random and evolutionary methods. The use of evolutionary methods, beca...

متن کامل

A New Multi-objective Job Shop Scheduling with Setup Times Using a Hybrid Genetic Algorithm

This paper  presents a new multi objective job shop scheduling with sequence-dependent setup times. The objectives are to minimize the makespan and sum of the earliness and tardiness of jobs in a time window. A mixed integer programming model is developed for the given problem that belongs to NP-hard class. In this case, traditional approaches cannot reach to an optimal solution in a reasonable...

متن کامل

The Effectiveness of Genetic Planning Model in rainfall-runoff Simulation process

The prediction of river, s discharge rate is one of the important issues in water resources engineering. This issue is very important for the planning, management, and policy making in water resources management, especially in the country like Iran, with limited water resources in line the economic and environmental development. Awareness of how the relationship between rainfall and run...

متن کامل

Shuffled Frog-Leaping Programming for Solving Regression Problems

There are various automatic programming models inspired by evolutionary computation techniques. Due to the importance of devising an automatic mechanism to explore the complicated search space of mathematical problems where numerical methods fails, evolutionary computations are widely studied and applied to solve real world problems. One of the famous algorithm in optimization problem is shuffl...

متن کامل

Study of Evolutionary and Swarm Intelligent Techniques for Soccer Robot Path Planning

Finding an optimal path for a robot in a soccer field involves different parameters such as the positions of the robot, positions of the obstacles, etc. Due to simplicity and smoothness of Ferguson Spline, it has been employed for path planning between arbitrary points on the field in many research teams. In order to optimize the parameters of Ferguson Spline some evolutionary or intelligent al...

متن کامل

A Novel Experimental Analysis of the Minimum Cost Flow Problem

In the GA approach the parameters that influence its performance include population size, crossover rate and mutation rate. Genetic algorithms are suitable for traversing large search spaces since they can do this relatively fast and because the mutation operator diverts the method away from local optima, which will tend to become more common as the search space increases in size. GA’s are base...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004